REGIONAL WHITE MATTER TRACT CHANGES IN ATTENTION/EXECUTIVE DEFICIT MILD COGNITIVE IMPAIRMENT

R. Grambaite1,2, P. Selnes1,2, I. Reinvang3, D. Aarsland2,4, E. Hessen1, T. Fladby1,2

1Department of Neurology, Akershus University Hospital, Lørenskog, 2Faculty Division Akershus University Hospital, 3Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Oslo, 4Psychiatry Clinic, Stavanger University Hospital, Stavanger, Norway

Introduction: Mild cognitive impairment (MCI) subjects may have impairment in multiple neuropsychological domains. Attention/executive deficits may occur in Alzheimer's disease (AD), but may also be caused by other types of pathology. Amnestic MCI often represents pre-dementia AD and is characterized by medial temporal lobe affection, but attention/executive deficit MCI (a/eMCI) has been less studied.

Aims: To analyze how attention/executive impairment is related to white matter (WM) tract and cortical changes. Our hypothesis is that executive impairment is related to frontal lobe changes.

Methods: We included 23 nonamnestic a/eMCI patients (MMSE 28.0: 25-30, age 61.3: 45-73, education 12.3: 8-18) and 23 normal controls (MMSE 29.4: 28-30, age 63.2: 48-78, education 12.1: 8-16), who underwent neuropsychological and MRI examinations. To be classified as a/eMCI, a score 1.3 SD below the control mean on at least two attention and/or executive parameters and normal score on at least two memory parameters were required. Morphometric analysis was performed in FreeSurfer and Tract-Based Spatial Statistics was used for analysis of DTI derived WM radial diffusion (DR).

Results: WM DR, underlying the medial orbitofrontal, cingulate and entorhinal cortices, were higher (Student's t-test; p< 0.05) in a/eMCI compared to controls, whereas no significant differences were found for the morphometric measurements. WM DR, underlying medial/lateral orbitofrontal, superior frontal, rostral middle frontal and cingulate cortices, correlated negatively with inhibition and inhibition/switching performance (p< 0.05) in a/eMCI, but no significant relations were found in controls.

Conclusion: Executive dysfunction is related to specific WM tract degeneration in frontal and cingulate regions.