EFFECTS OF REGULAR AEROBIC EXERCISE ON NEURAL FUNCTION IN PERSONS WITH ALZHEIMER'S DISEASE

D. Milham1, R. Newton2, Z. Kendrick3

1School of Science and Primary Industries, Waikato Institute of Technology, Hamilton, New Zealand, 2Physical Therapy, 3Kinesiology, Temple University, Philadelphia, PA, USA

Introduction: Affecting millions and costing $billions, Alzheimer's disease (AD) causes deficits in neural function, effecting both cognitive and executive function. The primary pathogen, \(\beta\)-amyloid-derived neuritic plaque, causes metabolic degradation that eventually leads to cell death. While pharmacological interventions have minimal effect on AD symptoms, research results indicate exercise enhances neuronal function through exercised-induced expression of Brain-derived neurotrophic factor (BDNF); a peptide that mediates neurotransmitter modulation, protein synthesis, and energy metabolism. Recognized as a primary mediator of \(\beta\)-amyloid, BDNF prevents \(\beta\)-amyloid-derived neuritic plaque buildup and is shown to attenuate AD symptoms/delay AD onset.

Aim: This study examined the AD/exercise hypothesis through the implementation of a physical exercise treatment, walking, over time.

Methods: Participants (N = 19; mean 85.5 yrs, SD = + 5.20) diagnosed with probable AD completed a single treatment, regular walking over time (30-min, 3 days per week for 12 weeks); pre/post-tests measured cognitive function and motor capabilities. Statistics - T-test with repeated measures ANOVA with various categorical variables as between-group factors.

Results: Along with significant reduction in falls (\(z = 2.392, p < .017\)), change in Cognitive function \(t(18) = 5.74, p < .001\), Balance \(t(18) = 7.43, p < .001\), and Mobility \(t(18) = 3.82, p < .001\) were significant. No main effect was associated with AD stage, Activities of daily living, Gender, or Education level.

Conclusion: The results of this study support the exercise hypothesis positing regular aerobic exercise enhances neural function in persons with probable AD, thus possibly attenuating AD symptoms and delaying AD onset.