HYDROLYSIS OF THE MUTANT UBIQUITIN (UBB+1) ASSOCIATED WITH NEURODEGENERATIVE DISORDERS BY UCH-L3

F. Dennissen1, N. Kholod1, H. Steinbusch1, N. Dantuma2, F. van Leeuwen1

1Neuroscience, Faculty for Health Medicine and Life Sciences (FHML), Maastricht University, Maastricht, The Netherlands, 2Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden

Introduction: The mutant ubiquitin UBB+1 accumulates selectively in the hallmarks of tauopathies and polyglutamine diseases. UBB+1 lacks the C-terminal glycine of ubiquitin and has 20 amino acids added to its C-terminus. As a result, UBB+1 cannot be used for ubiquitination and impairs the ubiquitin-proteasome system (UPS). Furthermore, ubiquitinated UBB+1 is refractory to deubiquitination by isopeptidase T. Studies in yeast and human cells showed that expression of UBB+1 gives rise to an additional truncated product that corresponds in size with ubiquitin (FASEB J. 23, 123-33, 2009).

Aims: To identify the peptidase responsible for the C-terminal truncation of UBB+1.

Methods: We performed a systematic screen with 175 yeast deletion strains. All strains were transformed to express mycUBB+1. Candidate genes from mouse and human were cloned from cDNA and co-transfected with mycUBB+1 in HEK293 cells. Truncation of mycUBB+1 was determined by immunoblotting using anti-myc antibodies.

Results: For yeast, we found the deubiquitylation enzyme YUH1 to be responsible for hydrolysis of the C-terminal extension of UBB+1. Human and mouse homologue of YUH1, UCH-L3, were also able to hydrolyse the C-terminus of UBB+1.

Conclusions: Human and mouse UCH-L3 are able to hydrolyse the C-terminal extension of UBB+1. Hydrolysis of UBB+1's C-terminal tail prevents detection with the antibodies specific for this extension. Consequently, we hypothesize that full length UBB+1 is a marker for UCH-L3 dysfunction and that this is a common factor in tauopathies and polyglutamine diseases but not in synucleinopathies.