Adenosine A_{2A} receptors (A_{2A}Rs) are G-protein coupled receptors that stimulate adenylyl cyclase activity. The most enriched A_{2A}Rs brain region is the striatum, in which A_{2A}Rs are largely restricted to GABAergic neurons of the indirect pathway, where they play out antagonistic interactions with dopamine D₂ receptors. Clinical trials have proven that antagonists of A_{2A}Rs reduce the postsynaptic effects of dopamine depletion and lessen motor symptoms of Parkinson's disease (PD).

In this study, we have characterized that DNA methylation controls basal A_{2A}R gene (ADORA2A) expression levels in human cell lines by quantitative chromatin immunoprecipitation and SEQUENON MassArray platform. Interestingly, we have shown increased DNA methylation percentage in the 5'UTR region of ADORA2A in the cerebellum with respect to the putamen of human post-mortem brains, showing an inverse relationship with A_{2A}R levels in both cerebral regions. In parallel, we have shown that the upregulation of A_{2A}Rs levels in the putamen of human post-mortem PD brains is not associated with any DNA methylation percentage lost in ADORA2A respect to age-matched control brains. However, we show that A_{2A}R levels are reduced after a S-adenosylmethionine (SAM) treatment (a DNA methyl group donor) in SH-SY5Y and U87-MG cells. Therefore, considering that there is a low percentage of DNA methylation in the putamen of PD cases, this study shows the possibility of a SAM intervention (as a coadjuvant of A_{2A}Rs antagonists) to reduce high A_{2A}R levels detected in PD, which might allow reducing L-dopa dose.