UTILITY OF CEREBROSPINAL FLUID MARKERS IN MILD COGNITIVE IMPAIRMENT

I. Baldeiras1,2, I. Santana1,3, M.H. Garrucho1,2, R. Pascoal2, R. Lemos3, B. Santiago3, C. Oliveira1,2

1Faculty of Medicine, University of Coimbra, 2Laboratory of Neurochemistry, 3Department of Neurology, Coimbra University Hospital, Coimbra, Portugal

Introduction: In recent years, research effort has aimed at evaluating the performance of Cerebrospinal Fluid (CSF) markers of neurodegeneration in Mild Cognitive Impairment (MCI). A few longitudinal studies suggest that these markers could be useful in identifying MCI cases that latter will progress to Alzheimer’s Disease (AD).

Aims: Evaluate the utility of CSF markers, namely amyloid-b\textsubscript{1-42} peptide (Ab\textsubscript{42}), total tau (t-tau) and phosphorylated tau (p-tau) protein, in the diagnosis and prognosis of MCI.

Methods: A group of 39 MCI patients, followed for at least 2 years, 130 AD patients and 33 controls without cognitive impairment were studied. Baseline CSF levels of Ab\textsubscript{42}, t-tau and p-tau were determined by sandwich ELISA. Patients were genotyped for Apolipoprotein E (ApoE) status.

Results: T-tau and p-tau levels in MCI were comparable to AD patients but significantly higher than in controls, presenting with high sensitivity and specificity figures (>80%). On the contrary, Ab\textsubscript{42} in MCI was similar to controls but significantly higher than in AD patients. These markers were influenced by ApoE genotype, with ApoE-e4 carriers showing significantly higher t-tau and p-tau and lower Ab\textsubscript{42} levels. Moreover, MCI patients that converted to AD had significantly higher baseline t-tau and p-tau levels than non-converters.

Conclusions: This study confirms the utility of CSF t-tau and p-tau in the diagnosis of MCI and in evaluating the probability of conversion to AD.

This work was supported by the Portuguese Foundation for Science and Technology (FCT) through PIC/IC/83206/2007.