INTENSIFIED AND COMBINED NEURODEGENERATION IN E200K GENETIC CREUTZFELDT-JAKOB DISEASE

G.G. Kovacs1,2, J. Seguin3, I. Quadrio3, R. Höftberger1, I. Kapás2, A. Gaëlle Biacabe4, N. Streichenberger3, D. Meyronet3, R. Sciot5, R. Vandenberghe6, K. Majtenyi2, T. Ströbel1, H. Budka1, A. Perret-Liaudet6

1Institute of Neurology, Medical University of Vienna, Vienna, Austria, 2Neuropathology and Prion Disease Reference Center, Semmelweis University, Budapest, Hungary, 3Prion Disease Laboratory; Pathology and Biochemistry, GHE, Hospices Civils de Lyon, 4Agence Française de Sécurité Sanitaire des Aliments, Unité ATNC, Lyon, France, 5Department of Pathology, University Hospital, Catholic University of Leuven, 6Neurology Department, University Hospital Gasthuisberg, Leuven, Belgium

Introduction: The E200K mutation is the most frequent prion protein gene (PRNP) mutation associated with genetic Creutzfeldt-Jakob disease (CJD). It is thought to have overlapping features with sporadic CJD, yet comparative neuropathological studies have not been reported.

Aims: To describe salient and concomitant neuropathological alterations in E200K genetic CJD.

Methods: We performed a comprehensive neuropathological and biochemical study of brains from 39 individuals carrying the E200K PRNP mutation.

Results: Although there was a relatively uniform anatomical pattern of tissue lesioning, the deposition of disease-associated PrP was influenced by the codon 129 constellation, including different or mixed types of PrPres detected by immunoblotting. We detected unique intraneuronal PrP deposition involving also brainstem nuclei. In addition, parenchymal amyloid-β was observed in 53.8% of cases, amyloid angiopathy (Aβ) in 23.07%, phospho-tau immunoreactive neuritic profiles in 92.3%, neurofibrillary degeneration in 38.4%, new types of tau pathology in 33.3%, and Lewy-type α-synuclein pathology in 15.4%.

Conclusions: Although age-associated and additional neurodegeneration has been described in prion diseases, we demonstrate intensified and combined neurodegeneration in a genetic prion disease due to a single point mutation. The E200K mutation may be an important model to evaluate the molecular interplay between neurodegeneration-associated proteins.