FUNCTIONAL AND STRUCTURAL CHANGES TO THE CA1 NETWORK IN B-AMYLOID PATHOLOGY

I. Oren1,2, D. Cummings2, A. Randall3, J. Brown3, D. Kullmann1, F. Edwards2

1Department of Experimental Epilepsy, 2Department of Neuroscience Physiology and Pharmacology, University College London, London, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, Uganda

Introduction: Although much is known of the molecular pathogenesis of Alzheimer's disease (AD), much less is understood about how β-amyloid (Aβ) pathology affects cognition. An increased prevalence of seizures and abnormal EEG in AD, and a dissociation between neuropathological markers and cognitive function, all argue for a functional disturbance in the cortical network.

Aims: We have asked if we can identify functional and structural changes in the specific components of the hippocampal network in Aβ pathology, focussing GABAergic inhibition.

Methods: We have used a combination of electrophysiology and histology in APP/PS1 transgenic mice. These experiments will be complemented with behavioural testing and Ca$^{2+}$ imaging.

Results: We have compared the number of interneurons in different layers of hippocampal CA1 by staining for GAD67 and found a significant reduction in stratum radiatum interneurons in APP/PS1 mice (p< 0.05). We compared pyramidal cell somatically-recorded IPSPs in APP/PS1 and wild-type mice. We found no differences in miniature and spontaneous inhibitory events. However when stimulating with a paired-pulse protocol, significant differences in short term plasticity were seen at long interstimulus intervals (800ms, PPR(WT)=1.3±0.1, PPR(APP/PS1)=0.6±0.1, p< 0.001).

Conclusions: These results are in line with a selective change to specific sub-components of the CA1 network in Aβ pathology. Such a change could contribute to the computational deficits both in Aβ-overexpressing mice and in AD.