EFFECTS OF UBIQUILIN-1 TRANSCRIPT VARIANTS ON \(\gamma \)-SECRETASE ACTIVITY AND APP PROCESSING

J. Viswanathan1, A. Haapasalo1, K.M. Kurkinen1, P. Mäkinen1, A. Lu2, L. Bertram3, H. Soininen1,4, R.E. Tanzi2, M. Hiltunen1

1Dept. of Neurology, University of Eastern Finland, Kuopio, Finland, 2Genetics and Aging Research Unit, Massachusetts General Hospital, Charlestown, MA, USA, 3Dept. of Vertebrate Genomics, Max-Planck-Institute for Molecular Genetics, Berlin, Germany, 4Dept. of Neurology, Kuopio University Hospital, Kuopio, Finland

Introduction: Genetic alterations in ubiquilin-1 (UBQLN1) gene have been associated with Alzheimer's disease (AD) risk. Subsequent studies related to the functional role of ubiquilin-1 in the cellular processes relevant for AD pathogenesis, such as \(\gamma \)-secretase function and amyloid precursor protein (APP) processing, have revealed cell-type specific differences.

Aims: Here we have assessed the effects of the ubiquilin-1 transcript variants TV1 (full-length) and TV2 (lacking exon 8) on \(\gamma \)-secretase function and APP processing in SH-SY5Y cells stably over-expressing APP751.

Methods: SH-SY5Y-APP751 cells were transiently transfected with TV1, TV2 or control plasmids. Western blotting and \textit{in vitro} AICD generation assay were used to assess alterations in APP processing and \(\gamma \)-secretase activity, respectively.

Results: TV1 over-expression resulted in enhanced APP maturation and increased levels of APP C83 and C99. Furthermore, \textit{in vitro} AICD generation assay in TV1 over-expressing membrane fractions revealed a statistically significant \(\sim 1.7 \)-fold increase in the C83-normalized AICD levels. Over-expression of TV1 along with an additional \(\gamma \)-secretase substrate, leukocyte common antigen related phosphatase (LAR), resulted in a competition between APP and LAR for the \(\gamma \)-secretase-mediated cleavage. Over-expression of TV2 also augmented APP CTF levels, but to a lesser extent as compared to TV1. However, TV2 over-expression did not significantly increase AICD generation. Confocal microscopy did not reveal changes in the subcellular localisation of APP or presenilin-1 in TV1 or TV2 over-expressing cells.

Conclusions: Collectively, our data suggest that ubiquilin-1 alters \(\gamma \)-secretase activity and APP processing in SH-SY5Y cells and that ubiquilin-1 TVs exert differential effects on these processes.