CEREBRAL BLOOD FLOW AND COGNITION IN AGED ALZHEIMER APP/PS1 MICE ON A MULTI-
NUTRIENT DIET CONTAINING DOCOSAHEXAENOIC ACID (DHA)

M. Wiesmann1,2, V. Zerbi1,3, D. Jansen1,2, C. Janssen1,2, I. Arnoldussen1,2, X. Fang1,2, A. Rijpma1,2, L. Broersen4, A. Heerschap3, A. Kiliaan1,2

1Dept. Anatomy, 2Dept. Cognitive Neuroscience, Donders Centre for Neuroscience, 3Dept. Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, 4Danone Research, Wageningen, The Netherlands

Introduction: Alzheimer’s Disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia. Lifestyle, vascular health and genetic factors influence the onset and progression of AD. Intake of a combined diet existing of docosahexaenoic acid (DHA), uridine-monophosphate (UMP) and components like antioxidants and B-vitamins may have an impact on the brain circulation, neuronal membranes and β-amyloid production affecting the course of AD.

Aims: In the current study, we will therefore investigate the effects of DHA combination diets on spatial learning and memory, and cerebral hemodynamics in 10-12 month old male APPswe/PS1dE9 mice and C57BL6/J mice.

Methods: From 2 months of age, mice were fed a standard diet, a DHA+UMP diet, and a multi-nutrient diet containing precursors and cofactors in membrane synthesis, such as DHA, phospholipids, UMP, choline, B-vitamins and antioxidants (Fortasyn). Cognitive assessments were performed using the (reverse) Morris Water Maze (MWM). A pulsed ASL technique with flow sensitive alternating Inversion Recovery (FAIR) was assessed with MRI at ultra-high field (11.7T) to evaluate changes in the cerebral blood flow in different brain regions.

Results: We expect an impairment in spatial learning and memory acquisition and also a decreased CBF and an improvement of these parameters in the APP/PS1 mice on Fortasyn diet. The experiments are still ongoing and the data will be presented.

Conclusions: DHA combination diets influence cognition. This may via cerebral circulation and neural membrane composition and may therefore play an important role in the onset and progression of AD.