IMPACT OF EEG-VIGILANCE ON BRAIN GLUCOSE UPTAKE MEASURED WITH $[^{18}F]$FDG-PET IN PATIENTS WITH DEPRESSIVE EPISODE OR MILD COGNITIVE IMPAIRMENT

T. Guenther1, P. Schönknecht1, G. Becker2, S. Olbrich1, C. Sander1, S. Hesse2, P.M. Meyer2, J. Luthardt2, U. Hegerl1, O. Sabri2

1Department of Psychiatry and Psychotherapy, 2Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany

Introduction: $[^{18}F]$fluorodeoxyglucose positron emission tomography ($[^{18}F]$FDG-PET) is a standard method for the examination of the cerebral glucose metabolism of patients with affective disorder or memory impairment.

Aims: Building upon previous neuroimaging studies, we supposed an association between electroencephalogram (EEG)-vigilance and normalized brain $[^{18}F]$FDG-uptake (nFDGu) as measured by $[^{18}F]$FDG-PET. For the first time, the present study exploratively investigated this association in a routine diagnostic work-up.

Methods: A simultaneous EEG $[^{18}F]$FDG-PET under resting conditions was acquired from 14 patients with depressive episode or mild cognitive impairment (MCI). EEG-vigilance was automatically classified by using the VIGALL algorithm (Vigilance Algorithm Leipzig). A nonparametric voxelwise simple linear regression with vigilance measure as predictor and nFDGu as criterion was performed using Statistical nonParametric Mapping toolbox.

Results: The main finding was a significant negative correlation between vigilance measure and nFDGu in bilateral frontal and temporal regions, bilateral cingulate gyrus and right thalamus.

Conclusions: Brain regions associated with EEG-vigilance partly overlapped with regions of impaired glucose metabolism in depression and MCI, as reported by previous studies. Vigilance-associated underestimation or overestimation of brain glucose uptake might reduce sensitivity and specificity during the routine diagnostic application of $[^{18}F]$FDG-PET.